
ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 5, May 2013 

 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                                            1956 

Boosting Bidirectional A* Efficiencies: 

State-nonexistence Fast-confirming Hashing 

Schemes and Partial Problem-based Informed 

Heuristic Generations 
Kee-cheol Lee 

Computer Engineering Department, Hongik University, Seoul, Korea 121-791 

 

Abstract: It is well-known that most games and real world problems are technically classified as NP-hard, and we often 

resort to human-like heuristics to get their sub-optimal solutions.  In case we really want to find an optimal path to a fixed 

goal of a problem instance in an enormous search space, the conventional A
*
 algorithm framework may be useful.  The 

success of A
*
 algorithms depends on how to generate a maximally informed admissible version of h-val, the estimated 

distance to the goal state, such that it is not larger than but still as close as the unknown real distance to the goal. Recently 

we have suggested a method of generating a heuristic value with that property. To operate A
*
 algorithms in binary search 

fashions, some depth of fixed step backward states are pre-stored in disk, and the hashing schemes to handle efficiently pre-

stored states must be designed to confirm fast the non-existence of a given state, not its existence, because the optimal path 

is there as soon as the existence of a state is confirmed. In this paper, state-nonexistence fast-confirming hashing schemes 

have been experimentally compared. The same pre-stored static backward states are also used for solving partial problems 

for the purpose of generating maximally informed admissible heuristic which guides the priority queue for A* algorithm in 

deciding which state to expand next. To show the validity of our method, it has been massively experimented for instances 

of Rubik‟s cube problem whose search space of states reachable from any given start state is known to cover 43*10
18

 states. 

The partial problems are experimentally compared, by varying forward search depths and tie-breaking functions, to show 

their effectiveness and efficiency in generating heuristic values. 

 

Keywords: bidirectional A
*
, state-nonexistence fast-confirming hashing, partial problem-based heuristic, dynamic forward 

search, static backward search 

I. FINDING AN OPTIMAL PATH TO A FIXED GOAL OF A 

COMPLEX PROBLEM
1
 

Most games and problems we face may be technically 

classified as NP-hard, which practically means that an 

optimal path to a goal state of a given problem becomes 

almost impossible to obtain as the size of a given problem 

instance becomes bigger, despite recent rapid hardware 

technology advances. Therefore, we normally seek their sub-

optimal heuristic-based solutions. However, if we still need 

their optimal paths, the framework of A
*
algorithm [1] [2] 

may be tried which theoretically produce optimal paths 

given sufficient time. The bidirectional A
*
 algorithm in [3] is 

shown in Fig. 1 to be used as the starting point of our 

discussion. This version is assumed to utilize for its 

backward search the pre-stored static state space including a 

fixed goal state. 

 
unsignedintState::f() { return g_val+ h_val; } 

boolBidirectional_A* { 

                                                 
1
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priority_queue<State> OPEN; 

set<State> CLOSED; // CLOSED is a set of states 

START.g_val = 0; START.h_val = heuristic(START);  

OPEN.push(START); // push START into OPEN 

while ( OPEN is not empty ) { 

State P = OPEN.top();OPEN.pop();// state with min f 

if (P is in the pre-stored static backward search space) { 

// GOAL check included here 

print the path from START through P to GOAL; 

return true; } 

for (each child C of P) { 

C.g_val = P.g_val + 1; C.h_val = heuristic(C); 

if (C already exists as oldC in OPEN) { 

if (C.f()>oldC.f()) 

{ OPEN.delete(oldC); OPEN.push(C);} 

  } else if (C already exists as oldC inCLOSED) 

{ CLOSED.delete(oldC); OPEN.push(C); } 

elseOPEN.push(C); 

} // end of for each child … 

CLOSED.add(P); 
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} // end of while ( true ) 

return false; // no solution exists 

} // end of bidirectional_A* 

Fig.1General framework of bidirectional-A* algorithm 

OPEN holding statesready to expand is a priority queue 

which returns the state with minimum f_val,which is the 

summation of g_val and h_val. g_val is the number of the 

steps from the initial state(START) to the current state, 

andh_val is the number of underestimatedsteps from it to the 

final state(i.e., GOAL).What matters most is how to 

generatean admissible (or nearly admissible) heuristic for 

calculating h_val such that its value is as large as possible 

but still not larger than real remaining steps.Korf tried a 

static pattern database [4], but we suggested a more 

complicated partial problem-based method, the outline of 

which has been described in [3]. This paper may be 

considered as its companion paper in which efficiency issues 

are experimentally treated regarding hashing methods and 

partial problem generation schemes. 

II. SAMPLE PROBLEM SPACE FOR EXPERIMENTS 

Our method of obtaining an optimal path to a given 

random start instance is general enough to be applied to any 

complex problem with a fixed goal state. However, just to 

clarify itsprocedure, we decided to utilize a well-known 

game problem, Rubik‟s cube, widely considered to be the 

world‟s best-selling toy[5]. It was estimated that 350 million 

cubes had been sold worldwide as of Jan. 2009 [6][7]. 

Humans can solve it in well under 100 moves with some 

methods [8][9], which are far from optimal and out of our 

concerns. 

A. God’s Number 

A lower bound of 18 had been established by analyzing 

the number of effectively distinct move sequences of 17 or 

fewer moves, and finding that there were fewer such 

sequences than cube positions.In 1995 Michael Reid raised it 

to 20. The first upper bound was probably around 80 or so 

from the algorithm in one of the early solution booklets. In 

1982, David Singmaster and Alexander Frey hypothesized 

that the number of moves needed to solve the Rubik‟s cube, 

given an ideal algorithm, might be in “the low 

twenties”[10].Computer search methods were used to 

demonstrate that any Rubik‟s cube can be solved in 26 

moves[11], and in 22 moves[12], and in July 2010, 

researchers including Rokicki, with about 35 CPU-years of 

idle computer time donated by Google, proved the so-called 

“God‟s number” to be 20[13]. More generally, it has been 

shown that an n * n * n Rubik‟s cube can be solved 

optimally in the order of n
2
 / log(n) moves[14]. 

Table I summarizes a history of God‟s number until it was 

shown to be 20[15]. 

TABLE I 

GOD‟S NUMBER IS 20[15] 

Year 
Lower 

bound 

Upper 

bound 
Notes and Links 

 
18 

around 

80 

mathematical analysis, early 

solution booklet 

1981 - 52 by Thistlethwaite 

1982 
 

might be 

low 20‟s 
by Frey and Singmaster[10] 

1990 - 42 by Kloosterman 

1992 - 39 by Reid 

1992 - 37 by Winter 

1995 20 29 by Reid 

2006 - 27 by Radu 

2007 - 26 by Kunkle and Cooperman [11]  

2008 - 22 by Rokicki and Welborn[12] 

2010 - 20 byRokicki, and et. al. [13]  

 

In this paper, we tested the effectiveness of our suggested 

method in solving an optimal or near optimal solution of a 

given Rubik‟s cube of some difficulty in 20 or less steps. 

B. The Problem Space and Its Backward Static Search 

Space 

Every state of the Rubik‟s cube can be defined by 48 tiles 

as in Fig. 2, excluding center tiles fixed during any 

move[16], though it has 6 faces each of which has 9 tiles. 

The goal state is the one with each face holding tiles of one 

color.The 48 tiles can be thought to be divided into 8 corners 

of 3 tiles and 12 edges of 2 tiles. Corners(Edges) move only 

to corner(edge) positions. A corner(edge) in a given position 

can be oriented in any of three(two) ways.The total number 

of states reachable from a given random state can be 

analytically calculated to be 43,252,003,274,489,856,000[4]. 

 

Fig. 2Face and tile number notations 

If we pre-store d_back-step backward states, the forward 

search can be limited to the depth of 20-d_back, considering 

the total depth is limited to 20. Considering the state size of 
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40 bytes, Table II[15] shows that the pre-stored disk space is 

0.3 Gigabytes for depth 6, 4.4 Gigabytes for depth 7, and 

57.7 Gigabytes for depth 8. In our experiments, d_back  was 

set to 7. 

TABLE II 

STATIC BACKWARD SEARCH SPACE AND DYNAMIC FORWARD SEARCH 

SPACE[15] 

pre-stored backward 

search Forward 

depth 

states in forward 

search space 
depth states  

0 1 20 43,252,003,274,489,856,000 

1 19 19 ~43e18 

2 262 18 ~42e18 

3 3,502 17 ~13e18 

4 46,741 16 ~1.2e18 

5 621,649 15 98,929,809,184,629,089 

6 8,240,087 14 7,564,662,997,504,768 

7 109,043,123 13 575,342,418,679,410 

8 1,441,386,411 12 43,689,000,394,782 

9 19,037,866,206 11 3,314,574,738,534 

10 251,285,929,522 10 251,285,929,522 

III. STATE-NONEXISTENCE FAST-CONFIRMING HASHING 

FOR PRESTORED STATIC SEARCH SPACE 

The pre-stored static backward search space is so big that 

it is logical to store all the entries in hard disk space. It must 

be noted that as soon as we confirm that the matching state 

is in the pre-stored space, we have only to follow the path 

from it to GOAL, and we are done. Therefore what matters 

is not how fast we find a given state, but how fast we 

confirm that a given state does not exist.The experiments 

have been conducted on a specific domain here, but the same 

procedure can be applied more generally. 

TABLE III 
COLLISIONS FOR ADIFFERENT NUMBER OF BUCKETS 

524,288 

bucket HT  
100M 

bucket HT  
500M 

bucket HT 

bucket 

size 
buckets 

 

bucket 

size 
buckets 

 

bucket 
size 

buckets 

0 285,080 
 

0 33,613,590 
 

0 402035741 

2 6 
 

1 36,640,358 
 

1 87663071 

3 5 
 

2 19,976,849 
 

2 9565144 

4 72 
 

3 7,261,843 
 

3 696162 

5 16 
 

4 1,982,473 
 

4 38187 

.... ... 
 

5 431,992 
 

5 1641 

410 256 
 

6 78,773 
 

6 53 

411 259 
 

7 12,218 
 

7 1 

412 268 
 

8 1,644 
 

8 0 

413 266 
 

9 233 
 

9 0 

... ... 
 

10 25 
 

10 0 

5520 1 
 

11 1 
 

11 0 

5560 1 
 

12 1 
 

12 0 

total 524,288 
 

total 100e6 
 

total 500e6 

empty 

rate 
54.4% 

 
empty 

rate 
33.6% 

 
empty 

rate 
80.4% 

Non-

empty 

bucket 

size 

455.85 

± 
412.11 

 

Non-

empty 

bucket 

size 

1.64 

± 
0.86 

 

Non-

empty 

bucket 

size 

1.11 

± 
0.34 

 

A. Real World Collision Results for Different Numbers of 

Buckets 

For experimental purpose we stored 1.09*10
8
 states of 7-

step space of Rubik‟s cube using hash tables by using 

problem-dependent realworld hashing functions, varying the 

number of buckets, and the experimental results are 

summarized in Table III. 

For 0.5mega buckets, more than a half of buckets get 

empty, and no bucket turns out to contain a single state. For 

100mega buckets, more than 70% of buckets are empty or 

contain just one entry position. If we utilize 500mega 

buckets, 80.4% of buckets get empty, and 17.5% of buckets 

contain just one entry position. 

B. Hash Table Structures 

For a hash table to be used for pre-stored backward 

searches it must be designed to confirm fast the nonexistence 

of a given state, which is quite different from the normal 

hashing designed to confirm fast where a given state is. 

Basically two step hashing is used, i.e., an array of hash1 

and an array of hash2, to be stored in disk. All the indexes to 

the pre-stored states are separately stored as an unsigned 

array (i.e. an array of hash2). Hash1 is responsible for a 

bucket of states with the same hash function, and contains 

within it the bucket size (the number of state indexes) and 

the start position in the hash2 array, which is 1
st
 method. In 

method 2, for the bucket size equal to 1, the index itself is 

stored for the start position. In method 3, 1
st
 index is stored 

in hash1 itself, and the rest indices are in hash2 array, except 

for the case of the bucket size 2, where 2
nd

 index is stored for 

the start position.In method 4, 1
st
 and 2

nd
 indices are stored 

in hash1 and the rest are in hash2 array, except for the case 
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of the bucket size 3, where 3
rd

 index is stored for the start 

position.Method 3 and 4 require bigger „struct‟ sizes for 

hash1 but reduces the number of indices to be stored in 

hash2 array. 

 
#typedef unsigned hash2 

// hash2contains prestored backward state index 

// array of hash2 is normally stored in disk. 

//NBUCKETS is 524288 or 100M or 500M 

 

<method 1> 

structhash1 { 

unsignedbucketsize; 

unsignedstart; // pos of 1st hash2 entry for bucketsize>= 1 
} hashtable[NBUCKETS];//normally in disk, not in memory 

 

<method2> 

structhash1 { 

unsignedbucketsize; 

union { 

unsignedstart; // 1st hash2 entry posfor bucketsize>= 2 

unsignedind;// 1st index for bucketsize == 1 

}  

} hashtable[NBUCKETS]; 

 

<method 3> 

structhash1 { 

unsignedbucketsize; 

unsignedind; // 1st index for bucketsize>= 1  

union { 

unsignedstart; //2nd hash2 entry posfor bucketsize>= 3 

unsignedind2; // 2nd index for bucketsize == 2 only 

} 

} hashtable[NBUCKETS]; 

 

<method 4> 

structhash1 { 

unsignedbucketsize; 

unsignedind; // 1st index for bucketsize>= 1  

unsignedind2; // 2nd index for bucket size >= 2 

union { 

unsignedstart; // 3rd hash2 entry posfor bucketsize>=4 

unsignedind3; // 3rd index for bucketsize == 3 only 

} 

} hashtable[NBUCKETS]; 

 

 

C. Analysis of Experimental Results 

All the data in this section is based on the experimental 

collision statistics in Table III. It must be kept in mind that 

around 4 giga bytes are already used for storing around 100 

mega states of 7-step backward space. 

1) Memory Efficiencies:Table IV summarizes how much 

more bytes are necessary to access the data based on 

hashing. Considering the size of our pre-stored data 

(4,361,724,920 bytes), 0.5 mega bucket table needs 

extra 0.440-0.444giga bytes(10.1~10.2%), 100 mega 

bucket table needs extra 1.090~1.633giga 

bytes(25.0~37.4%), and 500 mega bucket table needs 

extra 4.086-8.000giga bytes(93.7~183.4%).The 

memory overhead for hashing looks reasonable for 0.5 

mega buckets or 100 mega buckets, but it gets very 

burdensome if we use 500 mega buckets. Table V 

shows the real sizes of buckets, i.e. hash2 bucket sizes. 

2) Speed Efficiencies:Table VI summarizes the average 

random accesses necessary to confirm the non-

existence of a given state. To confirm that a given state 

is not stored, 2.12~2.75 accesses are needed for 100 

mega bucket table, and 1.22~1.41 accesses are needed 

for 500 mega bucket table. For the latter, however, 

using more disk space does not much improve the 

average random accesses, and the method 3 with 1.22 

accesses (or even method 2 with 1.24 accesses) looks a 

good choice. In case of 100 mega bucket table, the 

method 3 with 2.19 accesses looks reasonable. Table 

VII shows how long it will take to confirm the non-

existence of one million given states, which is often 

the case with a complex problem like Rubik‟s cube. 

Table VIII summarizes the memory and speed of the 

100 mega and 500 mega cases (method 3). Compared 

with 100 mega bucket table, 500 mega bucket table 

requires 4.72 giga byte space more, but can finish in 

55.7% time. 

TABLE IV 

ADDITIONAL DISK SPACE IN BYTES FOR HASHING 

Buckets 524,288 100e6 500e6 

method 1 440,366,796 1,236,172,492 4,436,172,492 

method 2 440,366,796 1,089,611,060 4,085,520,208 

method 3 441,507,092 1,290,719,456 6,006,054,880 

method 4 443,604,204 1,632,624,712 8,000,485,584 

[Note] the above summarizes the additional storage for 

hashing pre-stored 4,361,724,920 byte data. 

TABLE V 

REAL SIZES OF HASH2 BUCKETS 

Buckets 524,288 100e6 500e6 

empty rate 0.5443 0.3361 0.8041 

rate of buckets whose size is 1 0 0.3664 0.1753 

rate of buckets whose size is 2 1.14e-5 0.1998 0.1913 

rate of buckets whose size is 3 0.95e-5 0.0726 0.0139 

(method 1) real size of 

buckets whose size is >= 1 
455.85±

412.11 
1.64±

0.86 
1.11±

0.34 

(method 2) real size of 

buckets whose size is >= 2 
455.85±

412.11 
2.43±

0.71 
2.08±

0.28 

(method 3) real size of 

buckets whose size is >= 3 
454.86±

412.11 
2.32±

0.61 
2.06±

0.24 



ISSN (Print)    : 2319-5940 
ISSN (Online) : 2278-1021 

 
  International Journal of Advanced Research in Computer and Communication Engineering 

 Vol. 2, Issue 5, May 2013 

 

Copyright to IJARCCE                                                                               www.ijarcce.com                                                                            1960 

(method 4) real size of 

buckets whose size is >= 4 
453.87±

412.11 
2.25±

0.54 
2.04±

0.21 

TABLE VI 

RANDOM ACCESSES TO CONFIRM THE NON-EXISTENCE OF ASTATE 

Buckets 524,288 100e6 500e6 

method 1 209.44±359.54 2.75±1.43 1.41±0.85 

method 2 209.44±359.54 2.39±1.45 1.24±0.56 

method 3 208.98±359.22 2.19±1.27 1.22±0.48 

method 4 208.53±358.91 2.12±1.13 1.22±0.47 

TABLE VII 

ANALYTIC TIME(HR) TO PROCESS 1 MILLION RANDOM STATES(10MS DISK 

ACCESS) 

Buckets 524,288 100e6 500e6 

method 1 581.78 7.65 3.93 

method 2 581.78 6.63 3.44 

method 3 580.51 6.08 3.39 

method 4 579.24 5.88 3.38 

TABLE VIII 

MEMORY AND TIME SUMMARY FOR METHOD 3 

buckets 
7-step pre-

stored space 

extra space 

for method 3 

hashing 

accesses to 

confirm state-

nonexistence 

100e6 
4.36 giga 

bytes 

1.29 giga 

bytes 
2.19±1.27 

500e6 
4.36 giga 

bytes 

6.01 giga 

bytes 
1.22±0.48 

IV. GENERATING PROPERLY INFORMED ADMISSIBLE 

HEURISTIC BASED ON PARTIAL PROBLEMS 

We assume the problem has a fixed GOAL state and the 

static backward search space of states of some depth has 

been pre-computed, which is a one-time job. This may be 

classified as a method which generates and combines some 

partial solutions[3]. 

A. Outline of a Partial Problem-based Method 

1) Preliminary procedure: First of all, the space BSS of 

states reachable (in the breadth first way) from 

GOAL must be built to be used for the backward 

search. The depth of the space, d_back, may be 

decided by considering the disk space reserved for 

storing static backward states.For example, we set 

d_back to 7 for Rubik‟s cube.This procedure may be 

summarized into following steps.  (1) Generate the 

partial problems of the given problem instance, such 

that they are small enough to generate their optimal 

solutions fast, but big enough to generate large h_val 

usable for solving the original problem. Solve them 

in the framework of A
*
 for sufficient (say 30 or 50) 

random problems.(2) Select some partial problems 

whose max h_valis large enough. Let‟s call the static 

backward search space fori-th selected partial 

problem BSS_PARTIAL(i). The new heuristic is 

defined to be the maximum h_val of all selected 

partial problems.(3) Decide the proper forward depth, 

d_for, by considering the max h_val found for the 

partial problems subtracted by the pre-stored depth of 

static backward search space. 

2) Procedure for a Given Instance: For each new 

problem instance, we have to construct 

FSS_PARTIAL(i), forward part of SS_PARTIAL(i). 

Note that we already have its backward part 

BSS_PARTIAL(i). Therefore the dynamically 

generated forward part should be much smaller than 

its backward counterpart, resulting in a limited d_for 

value. Consult [3] for the issues concerned with their 

generations. Given a problem instance, we construct 

some FSS_PARTIAL(i)‟s, and we are ready to start 

the A
*
 algorithm.For each intermediate state we meet 

while running A
*
algorithm, its h_val is set to the 

largest of all partial problem h_vals. 

TABLE IX 

SUMMARY OF PARTIAL CUBE SOLUTIONS FOR 25 SAMPLES WHOSE 

EFFECTIVE MOVES ARE 23.5± 3.0 

 
path

len. 
forward 

states 
backward 

states 
total 

states 
time 
(sec) 

corner 

cubes 
9.0±

0.9 

47,149±9,7

13 

14,242±14,

220 

61,391±20,

762 

0.4±

0.1 

edge 

cubes 

12.0

±0.9 
603,075±24

9,028 

260,923±22

1,965 

814,716±42

5,869 

5.2±

3.0 

0-1 
11.4

±1.1 
297,720±20

4,996 

63,098±57,

056 

360,818±24

4,362 

1.3±

0.8 

0-1 

+2/0 

11.4

±1.1 
304,841±19

9,852 

64,845±55,

845 

369,686±23

7,394 

1.3±

0.9 

0-1 

+2/4 

12.0

±1.4 
506,661±22

9,703 

202,372±18

0,062 

709,033±37

5,408 

2.5±

1.5 

0-1 

+2/7 

12.0

±1.2 
493,412±29

2,345 

167,649±16

5,502 

661,061±43

0,146 

2.4±

1.8 

0-1 

+2/67 

12.4

±1.2 
1,168,857±

997,672 

472,184±20

3,580 

1,641,041±

1,119,939 

7.7±

7.3 

0-1 

+2/46 

12.6

±1.4 
882,550±60

1,737 

439,386±23

7,652 

1,321,937±

786,312 

5.6±

4.0 

0-1 

+2/25 

12.5

±0.9 
547,993±24

9,162 

266,310±22

0,572 

814,304±43

3,557 

3.0±

1.7 

0-1 

+2/13 

12.3

±1.1 
638,348±26

6,783 

285,913±21

8,146 

924,261±46

2,248 

3.5±

2.0 

0-1 
+2/257 

12.6

±1.2 
1,404,869±

1,307,434 

477,427±21

4,144 

1,882,295±

1,428,153 

9.8±

11.3 
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0-1 
+2/467 

13.4

±1.1 
3,284,856±

2,770,177 

625,519±27

2,393 

3,910,375±

2,981,393 

30.4±

33.6 

0-1 + 
2/0467 

13.4

±1.1 
3,284,856±

2,770,177 

625,519±27

2,393 

3,910,375±

2,981,393 

31.1±

34.7 

0-1-2 
14.8

±1.3 

12,418,911

±5,838,039 
8,640,670±

4,952,853 

21,059,581

±10,539,320 
898.±

903.1 

B. Selection of  Partial Problems 

Table IX summarizes partial problem efficiencies in terms 

of their path lengths, the number of states generated, and the 

total time. For these intermediate experiments, we utilized 

some heuristic the maximum value of which is 8. For 

instance of the partial cube notation, 0-1+2/67 denotes the 

faces 0 and 1 and two tiles (numbered 6 and 7) of the face 2 

are used as a partial problem. 0-1+2/46 produces a very good 

result among two faces and two tiles partial problems, 

because tiles 4 and 6 of face 2 are the ones farther away 

from the faces 0 and 1. The more tiles we consider, the 

better path lengths(which is the partial problem h-val) we 

obtain at the cost of speed. We could utilize some 2 face plus 

2 tile partial problems, but we decided to use 2 face ones, 

which would require more partial ones. Please note that 

these experiments are done for 25 random sample data 

whose effective moves are 23.5. 

Table X summarizes the results obtained by combining 

partial problems of two faces. We used 50 random sample 

data with 50 effective moves. It should be noted that the data 

used for Table X are fully random and different from the 

ones for Table IX and the result comparisons must be done 

within the entries in the same table. The last case of 3 pairs 

is a good choice, which happens to use 3 partial problems of 

faces (a) 0 and 1, (b) 2 and 3, and (c) 3 and 5, implying that 

using 5 faces with one face overlapped is better than 6 faces 

non-overlapped. 

TABLE X 

H_VALCALCULATED FOR PARTIAL PROBLEMS OF 50 RANDOM PROBLEM 

INSTANCES 

h max avg. 

a. 0-1 13 10.80 

b. 2-3 12 10.98 

c. 4-5 12 10.74 

d. 1-2 13 10.84 

e. 3-5 12 10.84 

2- 

pairs 

ab 13 11.44 

ac 13 11.22 

ad 13 11.14 

ae 13 11.38 

3- 

pairs 

abc 13 11.56 

abd 13 11.54 

abe 13 11.64 

4- 

pairs 

abcd 13 11.60 

abce 13 11.68 

C. Experimental Results 

For the experimental purpose, a set of Rubik‟s cube 

problem instances was generated and consistently used 

whose optimal path lengths are 10 to 14 steps. The number 

of states stored before solving the problem instance was 

counted. 

Table XI summarizes the experimental results, the part of 

which was reported before [3], but we tried different tie-

breaking rules. Basically for breaking ties, first additional 

heuristics (called heu6 and heu8 here) were tried and then 

last-come-first-out methods and first-come-first-out methods 

were applied. Generally speaking, stack-type tie-breaking 

rules worked better especially for harder problems. We 

won‟t delve into the additional heuristics here. Other 

experiments are all based on our suggested method with 

different max depths(d_for) of dynamic forward search 

space, set to 5-7. The currently used static space 

depth(i.e.d_back) 7 requires just 4 giga byte disk space, but 

it may be raised up to 10 to require 10 tera byte disk, 

acceptable in modern computers.The value of the dynamic 

search space depth, d_for, can be effectively raised as long 

as the memory capacity allows. 

TABLE XI 

EXPERIMENTAL RESULTS WITH 7-STEP PRE-STORED BACKWARD STATES 

(a) forw. heuristic=heu6 

#steps 10 11 12 13 14 

forward 

states 

stored 

957 33,987 628,964 9,558,799 
> 

50e6 

 

(b) forw. heuristic=myh(d_for=5) 

#steps 10 11 12 13 14 

states stored for 

each two-face 

partial prob. 

(46741+α) 

363 296 174 137 142 

forward 

states 

stored 
:queue 

-type tie 

breaker 

5-bfs 

inside 
63 237 837 1,321,397 

> 

50e6 

5-bfs 
/heu6 
inside 

63 237 837 7,032,237 

> 

50e6 

5-bfs 
/heu8 
inside 

63 225 837 4,570,108 

> 

50e6 

forward 

states 

stored 
:stack 

-type tie 

breaker 

5-bfs 

inside 
63 228 894 1,450,964 

> 

50e6 

5-bfs 
/heu6 
inside 

63 228 894 3,162,174 > 
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50e6 

5-bfs 
/heu8 
inside 

63 228 894 3,186,957 

> 

50e6 

 
(c) forw. heuristic=myh(d_for=6) 

#steps 10 11 12 13 14 

states stored for 

each two-face 

partial prob. 

(621649+α) 

3980 3361 2113 1839 1904 

forward 

states 

stored 
:queue 

-type tie 

breaker 

6-bfs 

inside 
120 504 1011 8896 46,545,179 

6-bfs 
/heu6 
inside 

120 504 1011 8896 > 50M  

6-bfs 
/heu8 
inside 

120 492 1011 8896 > 50M  

forward 

states 

stored 
:stack 

-type tie 

breaker 

6-bfs 

inside 
93 420 1665 10186 11,615,151 

6-bfs 
/heu6 
inside 

93 420 1665 10186 47,422,873 

6-bfs 
/heu8 
inside 

93 477 1665 10186 4,025,489 

 

(d) forw. heuristic=myh(d_for=7) 

#steps 10 11 12 13 14 

states stored for 

each two-face 

partial prob. 

(8,240,087+α) 

42718 38375 26516 23549 25143 

forward 

states 

stored 
:queue 

-type tie 

breaker 

7-bfs 

inside 
510 10338 12747 96696 198515 

7-bfs 
/heu6 
inside 

510 10338 12747 96689 198245 

7-bfs 
/heu8 
inside 

510 8406 12720 97832 198383 

forward 

states 

stored 
:stack 

-type tie 

breaker 

7-bfs 

inside 
657 10938 5064 174898 89261 

7-bfs 
/heu6 
inside 

657 10950 5064 174353 89261 

7-bfs 
/heu8 
inside 

657 10968 5064 175002 127414 

 

V. CONCLUSION 

Many problems may be stated in the framework of binary 

search A
*
 algorithm with the pre-stored backward search 

space.First of all, the design of hashing schemes,which fast 

confirms the non-existence of a state, not its existence, is 

necessary to effectively utilize the pre-stored space. In 

addition, to practically utilize A
*
whichguarantees the final 

path optimality we have to devise informed admissible 

heuristic for a given specific problem. Accordingly, how to 

generatepartial problems which may suggest that kind of 

heuristicmay be the key to the success of A
*
 given a problem 

instance. 

Our bidirectional search paradigm was massively tested 

for the practical domain of Rubik‟s cube. The hashing 

schemes for fast confirming the non-existence of a state in 

the pre-stored backward space were experimentally 

compared. The generation of partial problems was also 

tested by varying the dynamic search depth for different tie-

breaking methods. 

Though a specific domain was used for experiments, the 

same procedure can to applied to a broader spectrum of 

complex problems with a fixed goal in finding their optimal 

(or almost optimal) paths efficiently. 
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